Data Analytics With R

60 hrs Theory Sessions

50 hrs of Practice Sessions

30 hrs of Hands-on Project

Introduction

Data Analytics certification courses in Hyderabad. The training program equips you with an apt understanding of data processing tools like Excel, SQL/NoSQL, and Data Visualization tools like Tableau and PowerBI. While SQL/NoSQL is used to work with the data stored in the Database Management software, Tableau and PowerBI are used in analyzing it and presenting visual stories to end-users. Concepts such as Data Preparation, Data Cleansing, and Exploratory Exploratory Data Analysis are explored in detail. Influential concepts like Data Mining of Structured (RDBMS) and Unstructured (Big Data) data, with the aid of real-life examples, are illustrated. Advanced Excel aids in data proficiency Concepts and it will help to reduce reduces working hours.

Course Overview

The primary objectives of the Data Analytics course are as follows:

  1. Fundamental Concepts: Introduce participants to fundamental concepts in data analytics, including data types, exploratory data analysis (EDA), and statistical measures.
  2. Data Exploration and Cleaning: Teach techniques for exploring and cleaning datasets to ensure data quality and reliability.
  3. Statistical Analysis: Provide an understanding of statistical methods and tests for drawing inferences from data.
  4. Data Visualization: Explore the principles of data visualization and introduce tools for creating compelling and informative visual representations of data.
  5. Introduction to Tools: Familiarize participants with popular data analytics tools, such as Python libraries (e.g., Pandas, NumPy) or specialized software (e.g., Tableau, Power BI).
  6. Practical Applications: Apply data analytics techniques to real-world scenarios, enabling participants to solve analytical problems and extract actionable insights.
  7. Interpretation and Communication: Develop skills in interpreting analytical results and effectively communicating findings to both technical and non-technical audiences.

Pre-requisites

  • Basic understanding of data and its importance.
  • Familiarity with spreadsheet applications (e.g., Microsoft Excel, Google Sheets).
  • Knowledge of basic statistical concepts (e.g., mean, median, standard deviation).
  • Understanding of data visualization principles.
  • Awareness of data analysis tools and software (e.g., Tableau, Power BI).
  • Experience with interpreting and presenting data in a meaningful way.

Course Curriculum

Excel

  • Basic Module
    • Introduction to Microsoft Excel
    • Installing Excel: Windows / Mac
    • Getting Familiar With Excel
    • Introduction to Tables
    • Input data into cells
    • Introduction to Formulas
    • Formula Behavior
    • Built in Functions
    • Combining Data From Two Tables
  • Advance Module
    • Pivot Tables
    • Nested IF statements
    • VBA to automate tasks

Custom Functions

Statistics

  • Descriptive Statistics
    • Data
    • Types of Data
    • Collection of Data
    • Population & Sample
    • Sampling Techniques
    • Measures of Central Tendency
    • Measures of Spread
    • Measures of Shape
    • Percentiles
    • Quartiles
    • Inter Quartile Range (IQR)
    • Outliers
    • Correlation
    • Covariance
    • Probability
    • Probability Distributions
    • Calculation of Probability using
    • Standard Error
    • Central Limit Theorem
    • Confidence Intervals
  • Inferential Statistics
    • Hypothesis Testing
    • Formulation of Null & Alternate Hypothesis
    • Type-I error & Type-II error
    • P value
    • Left tail vs Right tail vs Two tail
    • 1 Sample test (Z test & T test)
    • 2 Sample test (independent test & paired test)
    • ANOVA Test
    • Chi-square Test

Python

  • Basic Module
    • Introduction to Python
    • Installation of Python
    • Variables
    • Input
    • Output
    • Data types
    • Data Structures
    • Operators
    • Condition Statements
    • Loops
    • Functions
  • Advance Module
    • Advance Functions
    • File handling
    • Errors
    • Exception Handling

Python for Data Science

  • Numpy
    • Introduction to Numpy
    • Numpy Attributes
    • Array creation
    • Indexing & Slicing
    • Iteration over a array
    • Array Manipulation
    • Mathematical Operators
    • Relational Operators
    • Functions
  • Pandas
    • Introduction to Pandas
    • Series & Data Frame
    • Create Data Frame
    • Column Selection, Addition & Deletion
    • Row Selection, Addition & Deletion
    • Merging & Concatenation
    • Import of Data from various sources
    • Basic insights of datasets
    • Summarizing Data
    • Sorting
    • Discretization
    • Indexing and Selecting Data
    • Filtering data
    • GroupBy
    • Exporting Data
    • Statistical Functions

Exploratory Data Analytics

  • Univariate Analysis
  • Bivariate Analysis
  • Multivariate Analysis
  • Matplotlib
    • Histogram
    • Box plot
    • Scatter Plot
    • Line Plot
    • Pie Chart
    • Bar Chart
    • Subplots
  • Seaborn
    • Bar Plot
    • Count Plot
    • Box Plot
    • Line Plot
    • Scatter Plot
    • Regression Plot
    • Pair Plot
    • Heatmap
    • Violin Plot

Data Cleaning

  • Dealing wrong Data
  • Dealing wrong data types
  • Treating the duplicates
  • Dealing Missing Values
  • Handling Outliers
  • Drop unnecessary columns

SQL

  • Basic Module
    • Introduction to Databases
    • Databases vs Spreadsheets
    • DBMS vs RDBMS
    • Introduction to SQL
    • SQL vs NoSQL
    • Installation of MySQL
    • Data Types in SQL
    • Keys – Primary Key & Foreign Key
    • Constraints
    • CRUD Operations
    • SQL Languages
    • SQL Commands
    • SELECT
    • SQL Clause
    • Operators
    • Wild cards
    • Aggregation functions
  • Advance Module
    • SQL Joins
    • Normalization
    • De-Normalization
    • SQL Functions
    • Sub queries
    • Common Table Expressions (CTE)
    • Views
    • Stored procedures

Power BI

  • Basic Module
    • Introduction to Power BI
    • Connectivity Modes
    • Power BI Desktop and Data Transformation
    • Data Visualization & Dashboard
  • Advance Module
    • Introduction to DAX
    • Data Types in DAX
    • DAX Calculation Types
    • Steps to Create Calculated Columns
    • Measures in DAX
    • DAX Syntax
    • DAX Functions
    • DAX Operators
    • DAX Tables and Filtering

Tableau

  • Basic Module
    • Introduction to Tableau
    • Connections
    • Visual Analytics
    • Basic Charts
    • Sorting
    • Filtering
    • Grouping
    • Sets
    • Built-in Functions (Number, String, Date, Logical and Aggregate)
    • Operators and Syntax Conventions
    • Table Calculations
  • Advance Module
    • Types of Calculations
    • Trend lines
    • Reference lines
    • Forecasting
    • Advance Plots
    • Dashboard


This course includes:

60 hrs Theory Sessions

50 hrs of Practice Sessions

30 hrs of Hands-on Project

Certificate: No

Students: 30

Language: English

Contact us

Phone: +91 949 393 8631
Email: info@zestcomputers.com